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Introduction. 

Vectors often appear in physics where they are used to represent 
quantities such as a force, the velocity or acceleration of an object 
and others, who are not fully representable by a single number 
like, for example, the mass of an object or the volume of a solid. 
The fact that they are characterized by such properties as the 
magnitude, the direction, orientation and, often, a point of 
application (as in the case of a force) suggests that they may be 
represented as arrows whose length is proportional to the 
magnitude. The other attributes like direction, orientation and the 
anchor point are more or less self-explanatory. 



Geometrically  we could identify a vector with an ordered pair of 
points, one point being the anchor point or the origin while the 
location the other one depends on the remaining attributes of the 
quantity which is being represented by the vector.



Two vectors sharing the anchor point can be added using the 
parallelogram rule. A vector can be scaled by a number, a scalar. 
Scaling preserves the point of origin and the direction of the 
vector. It may affect the orientation (if the scalar is negative) and 
the length (if the scalar is different from both 1 and −1). Hence, 
in order to create the algebra of vectors we consider only vectors 
anchored at a chosen single point called the origin. 



In order to use algebraic approach to vectors we consider the 
space R2 or R3 or some such and we assume that all vectors 
originate at (0, … ,0). Thus every vector is uniquely identified by 
its endpoint. This strategy results in a very easy algebraic 
definition of vector operations. Namely, if you have vectors v1

and v2 represented by endpoints (a,b) and (c,d) then v1+v2 is 
represented by (a+c,b+d) and p(a,b) by (pa,pb)



Often we write (a,b) + (c,d) = (a+c,b+d) and p(a,b) = (pa,pb) but 
you should be aware that this does not mean that we add or scale 
points of the plane (or other Euclidean space). We add and scale 
vectors who by default both originate at (0, …,0) and terminate at 
(a,b) and (c,d) respectively.



Definition. (of a vector space)

A vector space (also called linear space) is an ordered triple 
(V, K, f) where 

• V is an Abelian group with operation usually denoted by +, 
whose elements are called vectors

• K is a field with operations denoted, somewhat confusingly, 
also by + and ·, whose element are called scalars

• f is a function from K×V into V called scaling. f(p,v) is 
often, confusingly, denoted by p·v

Such that 



1. ∀λϵK ∀u, vV ·(u + v) = ·v + ·v

2. ∀α, βϵK ∀vV (α + β) ·v = α·v + β·v

3. ∀α, βϵK ∀vV (α·β)·v = α·(β·v)

4. ∀vV 1·v = v, where 1 denotes the identity of field 
multiplication.

Notice the ambiguity caused by the double meaning of + and · 
symbols. This is a BAD, UGLY monster but it is traditional. 
We let context decide which "+" means scalar addition and 
which – vector addition. Otherwise we would have to 
introduce extra symbols for scaling and vector addition which 
would also confuse some people. And would be hard to type.



Switching to the old presentation for some examples.



Example. (A REALLY outlandish one)

Let X be any set. We will use V = (2X,  ) as the Abelian group of 
vectors, where  denotes the operation of symmetric difference of 
sets, AB = (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵). We will also use ℤ2, ۩,⨂ as 
the field of scalars. Scaling is defined as follows: 

for every set A, 0A =  and 1A = A.

Comprehension.
Check that the above structure is a vector space.



FAQ. 1

What the hell is a vector?
The only proper answer to this question, even though a little 
confusing, is "A vector is an element of a vector space". The 
previous example teaches us that sets can be vectors. In other 
examples we have seen numbers, complex numbers, n-tuples of 
numbers, functions, polynomials etc. playing the role of vectors.



FAQ. 2
What the hell is a scalar then?

Well, you probably realize that the answer will equally trivial (or 
disturbing). An (every, really) element of a field may be called a 
scalar if somebody decides to construct a vector space using this 
particular field as the second element of the ordered triple 
constituting a vector space.



Example.
In the vector space of real numbers over the field of real numbers 
the numbers are both vectors and scalars. 

In ℂ over ℝ complex numbers are vectors, real numbers are 
scalars. 

In 2X over ℤ2vectors are subsets of X and there are but two 
scalars, 0 and 1.

That’s what makes general study of vector spaces useful. 
Whatever facts we discover they will be true in each and every of 
these spaces.



Theorem. (Arithmetic properties of vector spaces)
In every vector space V over a field K

1. for every vector v, 0v=𝜃, 𝜃 represents the zero vector.

2. for every scalar p, p𝜃 = 𝜃.

3. for every scalar p and vector v, (−p)v = p(−v) = −(pv).

4. for every scalar p and vector v, pv = 𝜃 implies p=0 or v= 𝜃.

Proof left as a comprehension exercise.



Examples. (of subspaces or not-subspaces)
Decide which subsets are subspaces:

1. 𝑥, 𝑦 ∈ ℝ2: 𝑥𝑦 ≥ 0 in ℝ2 over ℝ

2. 𝑥, 𝑦 ∈ ℝ2: 𝑥 + 𝑦 ≥ 0 in ℝ2 over ℝ

3. 𝑥, 𝑦 ∈ ℝ2: 𝑥 = 5𝑦 in ℝ2 over ℝ

4. 𝑥, 𝑦 ∈ ℝ2: 𝑥2 = 𝑦 in ℝ2 over ℝ

5. 𝑥, 𝑦, 𝑧 ∈ ℝ3: 𝑥 + 𝑦 − 3𝑧 = 1 in ℝ3 over ℝ

6. 𝑎, 𝑏 , 𝑎 , in 2 𝑎,𝑏,𝑐 over ℤ2


